Module tiresias.server.handler.integrated
Expand source code
import numpy as np
from tiresias.core.regression import LinearRegression
from tiresias.core.classification import LogisticRegression, GaussianNB, TiresiasClassifier
def handle_integrated(task, data):
rows = []
for row in data:
rows.extend(row)
x = np.array([[row[var] for var in task["inputs"]] for row in rows])
y = np.array([row[task["output"]] for row in rows])
if task["model"] == "GaussianNB":
clf = GaussianNB(epsilon=task["epsilon"])
clf.fit(x, y)
return clf
elif task["model"] == "LogisticRegression":
clf = LogisticRegression(epsilon=task["epsilon"])
clf.fit(x, y)
return clf
elif task["model"] == "LinearRegression":
clf = LinearRegression(epsilon=task["epsilon"])
clf.fit(x, y)
return clf
elif task["model"] == "Classification":
clf = TiresiasClassifier(epsilon=task["epsilon"])
clf.fit(x, y)
return clf
else:
raise ValueError(task["model"])
Functions
def handle_integrated(task, data)
-
Expand source code
def handle_integrated(task, data): rows = [] for row in data: rows.extend(row) x = np.array([[row[var] for var in task["inputs"]] for row in rows]) y = np.array([row[task["output"]] for row in rows]) if task["model"] == "GaussianNB": clf = GaussianNB(epsilon=task["epsilon"]) clf.fit(x, y) return clf elif task["model"] == "LogisticRegression": clf = LogisticRegression(epsilon=task["epsilon"]) clf.fit(x, y) return clf elif task["model"] == "LinearRegression": clf = LinearRegression(epsilon=task["epsilon"]) clf.fit(x, y) return clf elif task["model"] == "Classification": clf = TiresiasClassifier(epsilon=task["epsilon"]) clf.fit(x, y) return clf else: raise ValueError(task["model"])